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How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear
structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full
story is more complex and interesting. In this work we present numerical evidence from ab initio lattice
simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by
quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems
with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order
transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid.
Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha
interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the
nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure
and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to
probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in
red giant stars and point to a connection between nuclear states and the universal physics of bosons at large
scattering length.
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There have been significant recent advances in ab initio
nuclear structure theory using a variety of different methods
[1–7]. Much of the progress has been driven by computa-
tional advances, but we also have a better conceptual
understanding of how nuclear forces impact nuclear struc-
ture. A key tool in making this connection is chiral effective
field theory, which organizes the low-energy nuclear
interactions of protons and neutrons according to powers
of momenta and factors of the pion mass. The most
important interactions are included at leading order
(LO), the next largest contributions appear at next-to-
leading order (NLO), and then next-to-next-to-leading
order (NNLO) and so on. See Ref. [8] for a recent review
of the chiral effective field theory. While the progress in
ab initio nuclear theory has been impressive, there are gaps
in our understanding of the connection between nuclear
forces and nuclear structure. In this Letter, we discover an
unexpected twist in the story of how nucleons self-
assemble into nuclei. In order to make our calculations
transparent and reproducible by others, we remove all
nonessential complications from our discussion. For this
purpose, we present lattice Monte Carlo simulation results
using lattice interactions at LO in chiral effective field
theory, together with Coulomb interactions between

protons. In the lattice calculations discussed here we use
a spatial lattice spacing of 1.97 fm and time lattice spacing
of 1.32 fm. We are using natural units where the reduced
Planck constant ℏ and the speed of light c equal 1.
Our starting point is two lattice interactions A and B at

leading order in chiral effective field theory which are by
design similar to each other and tuned to experimental low-
energy nucleon-nucleon scattering phase shifts. The details
of these interactions and scattering phase shifts are pre-
sented in the Supplemental Material [9], but we note some
important points here. The interactions appear at LO in
chiral effective field theory and consist of short-range
interactions as well as the potential energy due to the
exchange of a pion. As the short-range interactions are not
truly pointlike, they are actually what we call improved LO
interactions. We write the nucleon-nucleon interactions as
VAðr0; rÞ and VBðr0; rÞ, where r is the spatial separation of
the two incoming nucleons and r0 is the spatial separation
of the two outgoing nucleons. The short-range interactions
in VAðr0; rÞ consist of nonlocal terms, which means that r0
and r are in general different. In contrast, the short-range
interactions in VBðr0; rÞ include nonlocal terms and also
local terms where r0 and r are fixed to be equal. The main
difference between interactions A and B is the degree of
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locality of the short-range interactions. Another difference
is that there are extra parameters contained in interaction B,
and these are used to reproduce S-wave scattering for two
alpha particles.
We have used auxiliary-field Monte Carlo simulations to

calculate nuclear ground state energies. In Table I we
present the ground state energies of 3H, 3He, 4He, 8Be, 12C,
16O, 20Ne for interactions A and B. While we use the
notation meant for bound nuclei, in some cases the nuclear
ground state is an unbound continuum state in our finite
periodic box. We do not stabilize against decay to alpha
particles. In fact, for the case of interaction A, all of the
ground states in Table I are multialpha states. Details about
the size of the box and the initial states used in the
Monte Carlo simulations are provided in Supplemental
Material [9]. The nuclei 4He, 8Be, 12C, 16O, 20Ne are
alphalike nuclei with even and equal numbers of protons
and neutrons. We show results at leading order (LO) and
leading order with Coulomb interactions between protons
(LOþ Coulomb), as well as the comparison with exper-
imental data. All energies are in units of MeV. The lattice
volume is taken large enough so that the finite-volume
energy correction is less than 1% in relative error. The
LOþ Coulomb results for interaction B are in good agree-
ment with experimental results, better overall than the
NNLO results in Ref. [3]. However, there is significant
underbinding for interaction A with increasing nucleon
number. For interaction A, it is illuminating to compute the
ratio of the LO energy for each of the alphalike nuclei to
that of the alpha particle. For 8Be the ratio is 1.997(6), for
12C the ratio is 3.00(1), for 16O it is 4.00(2), and for 20Ne
we have 5.03(3). These simple integer ratios indicate that
the ground state for interaction A in each case is a weakly
interacting Bose gas of alpha particles. This interpretation
is also confirmed by calculations of two-nucleon spatial
correlations and local four-nucleon correlations.
To understand how interactions A and B can produce

such completely different physics, we show their alpha-
alpha S-wave phase shifts in Fig. 1. The LO results for
interaction A are shown with green triangles, LOþ
Coulomb results for A are orange diamonds, LO results
for B are blue circles, and LOþ Coulomb results for B are

red squares. The experimental data are shown with black
asterisks [30]. The phase shifts are computed using
auxiliary-field Monte Carlo simulations and a technique
called the adiabatic projection method [31]. Interaction B
was tuned to the nucleon-nucleon phase shifts and the
alpha-alpha S-wave phase shifts, and so the agreement with
experimental data is very good. However, the phase shifts
for interaction A are small and even negative at larger
energies. This would explain the large differences between
interactions A and B for the energies of the larger alphalike
nuclei in Table I.
What we have discovered is that alpha-alpha scattering is

very sensitive to the degree of locality of the nucleon-
nucleon lattice interactions. In the Supplemental Material
[9] we show that this dependence on the degree of locality
is due to the compactness of the alpha-particle wave

TABLE I. Ground state energies of 3H, 3He, 4He, 8Be, 12C, 16O, 20Ne for interactions A and B. We show LO
results, LOþ Coulomb results, and experimental data. All energies are in units of MeV. The error bars denote one
standard deviation errors.

Nucleus A (LO) B (LO) A (LOþ Coulomb) B (LOþ Coulomb) Experiment
3H −7.82ð5Þ −7.78ð12Þ −7.82ð5Þ −7.78ð12Þ −8.482
3He −7.82ð5Þ −7.78ð12Þ −7.08ð5Þ −7.09ð12Þ −7.718
4He −29.36ð4Þ −29.19ð6Þ −28.62ð4Þ −28.45ð6Þ −28.296
8Be −58.61ð14Þ −59.73ð6Þ −56.51ð14Þ −57.29ð7Þ −56.591
12C −88.2ð3Þ −95.0ð5Þ −84.0ð3Þ −89.9ð5Þ −92.162
16O −117.5ð6Þ −135.4ð7Þ −110.5ð6Þ −126.0ð7Þ −127.619
20Ne −148ð1Þ −178ð1Þ −137ð1Þ −164ð1Þ −160.645
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FIG. 1. Alpha-alpha S-wave scattering. We plot S-wave phase
shifts δ0 for alpha-alpha scattering for interactions A and B versus
laboratory energy. We show LO results for interaction A (green
triangles), LOþ Coulomb for A (orange diamonds), LO results
for B (blue circles), and LOþ Coulomb results for B (red
squares). The phase shift analysis of experimental data are shown
with black asterisks [30]. The theoretical error bars indicate one
standard deviation uncertainty due to Monte Carlo errors and the
extrapolation to infinite number of time steps.
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function. In contrast, the nucleon-nucleon scattering phase
shifts make no constraint on the degree of locality of the
nucleon-nucleon interactions. For example, if one starts
with a purely local interaction, a unitary transformation can
be used to define a new interaction which is highly nonlocal
but having exactly the same phase shifts. The differences
only become apparent in systems with more than two
nucleons and can be understood as arising from three-body
and higher-body interactions [32,33]. Interaction A is a
perfectly valid starting point for describing nucleon-
nucleon interactions. However, substantial higher-nucleon
interactions will be needed to rectify the missing strength of
the alpha-alpha interactions and the additional binding
energy in nuclei.
The results we have found here suggest a strategy for

improving future ab initio nuclear structure and reaction
calculations by incorporating low-energy light-nucleus
scattering data in addition to nucleon-nucleon scattering
data. This would be especially important for accurate
calculations of key alpha capture reactions relevant to
astrophysics such as alpha capture on 12C [34]. One can
view the extra step of fixing the degree of locality of the
nucleon-nucleon interaction as preemptively reducing the
importance of the required three-body and higher-body
interactions. It is similar in spirit to other approaches that
use nuclear structure and many-body observables to help
determine the nucleon-nucleon interactions [7,35,36].
Since alpha-alpha scattering is a difficult and computa-

tionally intensive ab initio calculation, it is useful to discuss
a simple qualitative picture of the alpha-alpha interaction in
a tight-binding approximation. For any nucleon-nucleon
interaction Vðr0; rÞ, we define the tight-binding potential
VTBðrÞ as the contribution that Vðr0; rÞ makes to the
effective interaction between alpha particles in the tight-
binding approximation where the alpha particle radius Rα is
treated as a small but nonvanishing length scale. In this
simple approximation the interaction Vðr0; rÞ contributes to
the effective alpha-alpha interaction only in two possible
ways. The first is what we call the direct term where
jr0 − rj≲ Rα, and the second is the exchange term where
jr0 þ rj≲ Rα. All other terms are forbidden because the
interaction is moving the nucleons to locations where there
are no alpha particles. For the LO lattice interactions we
consider here at lattice spacing 1.97 fm, we do not attempt
to resolve the different microscopic mechanisms that can
contribute to VTBðrÞ. However, calculations at smaller
lattice spacings would find that the two-pion exchange
interaction is responsible for a large attractive tight-binding
potential at NNLO [8]. This observation connects well with
the work of Ref. [37], which considered the role of the two-
pion exchange interaction in an effective field theory where
alpha particles are treated as fundamental objects.
In Fig. 2 we show the tight-binding potential for the LO

lattice interactions for A and B. For our lattice calculations
where space is discrete, we find that Rα is less than one

lattice spacing and so the dependence on Rα drops out. We
see that interaction A has a very small tight-binding
potential. This is consistent with the weak alpha-alpha
S-wave interactions found in Fig. 1. In contrast, interaction
B has a stronger attractive tight-binding potential resulting
from its short-range spin-isospin-independent local inter-
action. For comparison we also show in Fig. 2 the tight-
binding potential for the leading-order interaction used
in prior lattice calculations, which we call interaction
C [3,31].
In order to discuss the many-body limit, we switch off

the Coulomb interactions and define a one-parameter
family of interactions Vλ ¼ ð1 − λÞVA þ λVB. While the
properties of the two, three, and four nucleon systems vary
only slightly with λ, the many-body ground state of Vλ

undergoes a quantum phase transition from a Bose-
condensed gas to a nuclear liquid.
We sketch the zero-temperature phase diagram in Fig. 3.

The phase transition occurs when the alpha-alpha S-wave
scattering length aαα crosses zero, and the Bose gas
collapses due to the attractive interactions [38,39]. At
slightly larger λ, finite alphalike nuclei also become bound,
starting with the largest nuclei first. The last alphalike
nucleus to be bound is 8Be at the so-called unitarity point
where jaααj ¼ ∞. Superimposed on the phase diagram, we
have sketched the alphalike nuclear ground state energies
EA for A nucleons up to A ¼ 20 relative to the correspond-
ing multialpha threshold EαA=4. Empirically, we find that
the quantum phase transition occurs at the point
λ∞ ¼ 0.0ð1Þ. The uncertainty of �0.1 is due to the energy
levels having a slow dependence on λ near λ ¼ 0.0. Since
any Vλ represents a seemingly reasonable starting point for
the effective field theory at LO, one may end up crossing
the phase transition when considering higher-order effects
beyond LO. It is in this sense that we say nature is near a
quantum phase transition.
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FIG. 2. Tight-binding potential. We plot the tight-binding po-
tential versus radial distance for theLO interactions forA,B, andC,
where C is the interaction used in several previous lattice calcu-
lations [3,31]. Interaction A is shown with blue squares and solid
line,B isdrawnwithredcrossesandadashedline,andC ispresented
with orange circles and a short-dashed line.
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The critical point for the binding of 20Ne occurs at
λ20 ¼ 0.2ð1Þ. For the binding of the other alpha nuclei, we
obtain λ16 ¼ 0.2ð1Þ for 16O, λ12 ¼ 0.3ð1Þ for 12C, and λ8 ¼
0.7ð1Þ for 8Be. One finds a sudden change in the nucleon-
nucleon density correlations at long distances as λ crosses
the critical point, going from a continuum state to a self-
bound system. As λ increases further beyond this critical
value, the nucleus becomes more tightly bound, gradually
losing its alpha cluster substructure and becoming more
like a nuclear liquid droplet. The quantum phase transition
at λ∞ ¼ 0.0ð1Þ is the corresponding phenomenon in the
many-body system, a first-order phase transition occurring
for infinite matter.
By adjusting λ in ab initio calculations, we have a new

tool for studying alpha cluster states such as the Hoyle state
of 12C and possible rotational excitations of the Hoyle state
[40–45]. By tuning λ to the unitarity point jaααj ¼ ∞, we
can continuously connect the Hoyle state wave function
without Coulomb interactions to a universal Efimov trimer
[46–48]. An Efimov trimer is one of an infinite tower of
three-body states for bosons in the large scattering-length
limit, with intriguing mathematical properties such as
fractal-like discrete scale invariance. Another interesting
system is the second 0þ state of 16O [49], which should be
continuously connected to a universal Efimov tetramer
[48,50,51]. This connection to Efimov states is now being
investigated in followup work. The ability to tune the
energies of alpha cluster states relative to alpha-separation
thresholds provides a new window on wave functions and
rotational excitations of alpha cluster states. By studying

the λ dependence of nuclear energy levels one can also
identify the underlying cluster substructure. For example,
the energy of a nuclear state which is a weakly bound
collection of four alpha clusters will track closely with the
four-alpha threshold 4E4He as a function of λ, while a state
which is composed of 12C and 4He clusters will track more
closely with E12C þ E4He. Such an analysis may provide a
new theoretical foundation for understanding clustering in
nuclei and complement existing work on clustering in the
literature [52–57], thereby strengthening the theoretical
motivation for experimental searches of alpha cluster states
in alphalike nuclei.
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