
1. SUPPLEMENTAL MATERIAL

1. The mean field

The bare mean field is taken to be a Saxon-Woods potential containing a central and a

spin-orbit term as in [1] (see Eq. (2-180)) :

V (r) = VWSf(r) + Vls(~l · ~s)r20
1

r

df(r)

dr
, (1)

with

f(r) =

[
1 + exp

(
r −RWS

aWS

)]−1
. (2)

The kinetic term is written as T = −~2
2
~∇ 1
mk(r)

~∇, where the k−mass has been parame-

terised according to,

mk(r) = mred − 0.2

[
1 + exp

(
r −Rm

am

)]−1
, (3)

with am = 0.5 fm, Rm = 2.34 fm. Far from the nucleus, the effective mass becomes equal

to the reduced mass, mred = 10/11 = 0.91m, while at the origin mk = 0.71m. This

parameterization is chosen so as to simulate the radial dependence associated with the

mean field obtained with the Skyrme SGII effective interaction (see below Section 4).

The parameters of the central potential have been varied so that the solution of the

Dyson equation in a box of radius Rbox = 50 fm reproduces the experimental energies after

renormalization ((NFT)ren dressing). We include a constraint on the value of the quantity

δnVWS = βn2RWSVWS, which is varied around the average experimental value δnVWS = 119

MeV fm, determined by electromagnetic decay and proton inelastic scattering (see Sect. 2).

The deviation from theoretical output and experiment to be minimized is then

χ2 = (ε̃s1/2 − ε
exp
s1/2

)2 + (ε̃p1/2 − ε
exp
p1/2

)2 + (ε̃d5/2 − ε
exp
d5/2

)2

+(0.15× (ε̃p3/2 − ε
exp
p3/2

))2 + (0.01× (βn2 VWSRWS − 119 MeV fm))2, (4)

where εexps1/2
= -0.502 MeV, εexpp1/2

= -0.182 MeV, εexpd5/2
= +1.281 MeV and εexpp3/2

= -6.81 MeV.

We have normalized the differences between theory and experiment, so that a similar

relative error for the various quantities has a similar impact on the value of χ2. We have

also required the admixture of the 2+ phonon in the wave function of the dressed 1̃/2+, 1̃/2−

and 5̃/2+ states to be larger than 10%.
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In this Supplemental material, we also take into account the coupling with octupole

vibrations and with monopole pairing vibrational modes, which are discussed below in Sect.

2 and 3. It will be shown in Sect. 4 that the effect of these couplings is marginal and

that it can be effectively taken into account by a slight renormalization of the mean field

parameters. Therefore, these couplings have not been been considered in the main text for

the sake of a clearer presentation of the essential physical picture.

2. Coupling to surface vibrations

The quadrupole collective vibrations of the system are calculated within the RPA, using

a separable interaction with a coupling constant tuned to reproduce the energy and transi-

tion strength of the lowest 2+ state, which plays the dominant role in the renormalisation

processes. For the octupole vibrations the standard self consistent coupling strength [2] has

been employed. The basic matrix element connecting single-particle level a ≡ {nlj} with

an intermediate particle-phonon state bλν, where λν denotes a collective surface vibration

associated with a deformation parameter βλν , is calculated as in [2] (see Eq. (6-209)):

h(a, bλν) = −ila+λ−lb
(

1√
4π

)1/2

< ja
1

2
λ0|jb

1

2
> βλν

∫
drr

dV

dr
φa(r)φb(r). (5)

We note that the details of the microscopic calculations do not play a relevant role in the

present case. In fact, we only need the energy and the deformation parameters of the

vibrations, and in practice we have used the experimental values for the lowest quadrupole

vibrational state. The RPA spectrum has been used for the higher quadrupole modes and

for the octupole modes.

A 2+ low-lying state is found in 10Be at E= 3.37 MeV. It has a value of B(E2 ↑) = 52±6 e2

fm4, which corresponds to βem2 = 1.13, to 8.1 s.p.u. and to the electromagnetic deformation

length δem = Mp

Z
= 2.92 ±0.17 fm [3] . This state was excited by proton inelastic scattering

[4]. The resulting proton deformation length is δp = β2R = 1.80± 0.25 fm. One can then

get an estimate of the neutron deformation length using the model by Bernstein which is

often employed in the analysis of inelastic scattering [5]:

δp =
0.3Mp + 0.7Mn

0.3Z + 0.7N
; δn =

0.7Mp + 0.3Mn

0.7Z + 0.3N
; (6)

from where one obtains δn = 2.38 ± 0.35 fm, which for standard values of R correspond to

βn2 ≈ 0.9. The depth of the neutron central potential used in the experimental analysis by
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Iwasaki et al. is Vn = 50.3 MeV, leading to δnVn = 119 ± 18 MeV fm, which is the value

that we take as an empirical input to be used in our calculations (see Section 1).

3. Coupling to pair vibrations

Monopole pair addition and removal modes have been calculated within pp-RPA, using

the Gogny interaction [6]. Denoting the matrix elements of the interaction between antisym-

metrized pairs of states coupled to angular momentum and parity equal to 0+ by Gaa′;bb′ ,

the pairing mode wave functions are obtained solving the equations

(εk + εk′)Xkk′ −
∑
p≤p′

Gkk′;pp′Xpp′ −
∑
h≤h′

Gkk′;hh′Xhh′ = EXkk′

(εi + εi′)Xii′ +
∑
p≤p′

Gii′;pp′Xpp′ +
∑
h≤h′

Gii′;hh′Xhh′ = EXii′ , (7)

where occupied (unoccupied ) orbitals have been labeled by h, i and by k, p respectively. Pair

addition (removal modes) are characterized by the dominance of amplitudes over unoccupied

(occupied) states. The normalisation is given by∑
p≤p′

X2
pp′ −

∑
h≤h′

X2
hh′ = ±1, (8)

where the minus sign applies to removal modes. In this paper we only consider the renormal-

isation of particle states, which couple to the pair removal mode. We will take into account

only the lowest mode, which will be denoted 0(−), with energy ~ωrem. The coupling vertex

between a particle a and the b0(−) configuration is given in this case by

h(a, b0(−)) =
δjajbδlalb√

2ja + 1

∑
cc′

Xcc′Gab;cc′ . (9)

The values of G have been multiplied by a factor equal to 0.85, in order to precisely repro-

duce the absolute value of the experimental two-neutron separation energy. The calculated

amplitudes of the lowest pair removal mode are reported in Table SI.
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E(MeV) X1s1/2 Xp3/2 Y2s1/2 Yp1/2 Yd5/2

-8.48 0.20 1.28 0.21 0.53 0.59

Table SI: Energy and wavefunction of the lowest removal mode 0(−), used to renormalize

the s1/2, p1/2 and d5/2 particle states.

4. Calculation of the single-particle energies and spectroscopic amplitudes

The matrix elements of the self-energy matrix Σi,k(E) between a pair of single-particle

states of 11Be labeled i ≡ {ni, li, ji}, k ≡ {nk, lk, jk} and of energies (εi, εk > εF ) are written

as,

Σi,k(E) = δli,lkδji,jk [δni,nkεnilj + Σpair
i,k (E) + Σsurf

i,k (E)], (10)

where the contribution associated with the coupling to surface vibrations is given by

Σsurf
i,k (E) =

∑
λ,ν,c,εc>εF

h(i, cλν)h(k, cλν)

E − (εc + ~ωλ,ν)
+

∑
λ,ν,c,εc<εF

h(i, cλν)h(k, cλν)

E − (εc − ~ωλ,ν)
(11)

and that associated with the coupling to the lowest pair vibrational state by

Σpair
i,k (E) =

∑
λ,n,c,εc>εF

h(i, c0(−))h(k, c0(−))

E + (εc − ~ωrem)
. (12)

The sum is taken over the phonons λ, ν and over a set of intermediate states c ≡ {nclcjc}.

We include in the calculations particle states of angular momentum s1/2, p1/2 and d5/2 up

to an energy cut off Ecut = 25 MeV. We include a single hole state, namely the 1p3/2 orbital.

The self-energy matrix is diagonalized separately for each l, j, on an energy mesh, and the

resulting eigenvalues ε̃lj,n are a solution of the Dyson equation,∑
k

[Σi,k(ε̃lj,n)× xljk ] = ε̃lj,nx
lj
i . (13)

A given solution has a single-particle component and a collective part. Denoting the

eigenvectors by xlji ( normalised so that
∑

i(x
lj
i )2 = 1) , the single-particle component is

written as

φ̃lj(r) =
∑
ni

xlji φnilj(r), (14)

while the component of the collective part associated with a given particle-phonon configu-

rations c, λn is given by

φ̃c,λνlj (r) =
∑
nc

R(c,λν)ljφnclcjc(r), (15)
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whereR(c,λν)lj =
∑

i x
lj
i

h(i,cλν)
ε̃lj,i−(εc+~ωλν)

for εc > εF andR(c,λν)lj =
∑

i x
lj
i

h(i,cλν)
ε̃lj,i−(εc−~ωλν)

for εc < εF .

The square of the single particle component of the dressed state is then given by

a2lj =
1

1 +
∑

c′,λ′ν′(R(c′,λ′ν′)lj)
2

(16)

while the admixture of the solution with the c, λν configuration is given by

a2(c,λν)lj =
(R(c,λν)lj)

2

1 +
∑

c′,λ′,ν′(R(c′,λ′ν′)lj)
2

(17)

The above solution provides the first term of the series of rainbow diagrams dressing the

single-particle states, taking into account the effect of many-phonon configurations. Higher

order terms can be generated iterating the solution self-consistently [7]. We have not at-

tempted to perform such a calculation in the present paper, but employ empirical renormal-

isation, choosing the single-particle intermediate states so as to reproduce the (low-lying)

experimental energies, and eventually the outcome of the clothing process, i.e. ε̃lj and φ̃lj. In

other words, the solution of the Dyson equation will be acceptable only if the single-particle

component of the solution is in agreement with the input used for the intermediate basis,

a requirement imposing a severe self-consistent condition to our diagonalization process.

In the calculations we have added a correction to the energy of the intermediate particle-

phonon configurations, to correct for Pauli principle violation associated with many-phonon

states (anharmonicities, see Section 6), implicitly considered in the empirical renormaliza-

tion. Such corrections are particularly important in the case of the renormalization of the

d5/2 states, because of the conspicuous coupling to the s1/2 ⊗ 2+ configuration.

The optimal deformation parameters and geometrical mean field parameters obtained

from our fitting procedure are shown in Table SII. Also shown is the value of the product

βn2RWSVWS, which is very close to the average experimental value 119 MeV fm.

The radial dependence of the central term of the resulting Saxon-Woods potential and

of the associated effective mass (see Eq.(3)) are shown in Fig. S1They closely resemble the

corresponding quantities obtained from a Hartree-Fock calculation with the SGII interac-

tion, also shown in Fig.S1. Actually, using directly the SGII mean field in the (NFT)ren

calculation, the energies of the 1̃/2+ and of the 1̃/2− renormalised states turn out to be

close to the experimental values, while the energy of the 5̃/2+ resonance is too low.

The energies of the dressed 1̃/2+, 1̃/2− and 5̃/2+ resulting from the fit are reported in

Table SIII. In each case, the results obtained including or excluding (as in the main text) the
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Fig S1: The central potential (left panel) and the effective mass (right panel) calculated

with the fitted Saxon-Woods potential (including the coupling to couple and pairing

vibrations) are compared to the corresponding quantities obtained from a Hartree-Fock

calculation with the SGII Skyrme interaction.

couplings to octupole (oct.) and pairing vibrations (p.v.) are compared. The wavefunctions

of the lowest dressed states including the coupling to octupole and pairing vibrations are

given by

|1̃/2+〉 =
√

0.82|s1/2〉+
√

0.17|(d5/2 ⊗ 2+)1/2+〉

+
√

0.01|(s21/2(0)⊗ 0(−))s1/2〉 (18)

|1̃/2−〉 =
√

0.84|p1/2〉+
√

0.02|(d5/2 ⊗ 3−)1/2−〉

+
√

0.14|((p1/2, p−13/2)2+ ⊗ 2+)0+, p1/2〉 (19)

|5̃/2+〉 =
√

0.56|d5/2〉+
√

0.21|(s1/2 ⊗ 2+)5/2+〉

+
√

0.22|(d5/2 ⊗ 2+)5/2+〉+
√

0.002|(p1/2 ⊗ 3−)5/2+〉

+
√

0.0005|((d5/2, p−13/2)3− ⊗ 3−)0+, d5/2〉+
√

0.003|(d25/2(0)⊗ 0(−))0+ , d5/2〉. (20)

They should be compared to those given in Eqs. (1-3) of the main text, obtained without

the coupling to octupole and pairing vibrations. These couplings mostly act on the energy

of the 1/2− configuration, but with opposite sign, so that their final effect is small.

The renormalised 5/2+ phase shifts, displaying a resonance at Eres = 1.25 (1.45) MeV of

width Γ = 140 keV (170 keV) with (without) coupling to octupole and pair vibrations, are

shown in Fig. S2, where they are compared with the phase shifts calculated with the bare

potential, displaying a broad resonance at E= 5.5 (7.3) MeV.

The 2s1/2 orbital is not bound in our initial bare potential. As a consequence, using the
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βn2 βn3 VWS Vls aWS RWS β
n
2RWSVWS

With oct. and p.v. coupling 0.77 0.28 70.2 0.31 0.81 2.10 115

No oct. and no p.v. coupling 0.79 - 68.9 0.21 0.77 2.15 119

Table SII: Optimal values of the deformation parameters βn2 , βn3 , and of the depth, radius,

diffuseness and spin-orbit strength of the mean field potential VWS, Vls (in MeV),

aWS, RWS ( in fm). Finally, we give the value of the product βn2RWSVWS (in MeV fm).

εp3/2 εp1/2 ε̃p1/2 S(1/2−) εs1/2 ε̃s1/2 S(1/2+) εresd5/2 ε̃
res
d5/2

With oct. and p.v. coupling -6.84 -2.21 -0.18 0.84 0.06 -0.50 0.82 5.50 1.25

No oct. and no p.v. coupling -6.37 -3.04 -0.18 0.84 0.07 -0.50 0.80 7.30 1.47

Table SIII: Unperturbed energies εp3/2 , εp1/2 and εs1/2 , renormalized energies ε̃p1/2 and ε̃s1/2 ,

resonant single-particle energies εresd5/2 , renormalised resonant energies ε̃resd5/2 (all in MeV),

spectroscopic factors S(1/2−) and S(1/2+), obtained with the optimal values reported in

Table SII.

same basis for the asymptotic and the intermediate states, the coupling matrix element will

be small due to the poor overlap in the corresponding radial wavefunctions. Iterating the

diagonalization, the s1/2 state eventually becomes bound, acquiring in the process a collective

component of the type d5/2 ⊗ 2+. At the same time, 5/2+ states will acquire both a bound

collective component through the coupling with the s1/2 ⊗ 2+ configuration and a localized

(resonant) single-particle wave function due to the mixing of the various continuum states.

For economy, these processes are taken into account within the framework of empirical

renormalization using a (intermediate) s1/2 state bound by 0.5 MeV as in experiment, and

verifying that this value coincides with the energy ε̃1/2+ of the final dressed |1̃/2+ > state.
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Fig. S2: (a) 5/2+ (NFT)ren phase shifts as a function of energy, with (solid line) or

without (dashed line) the coupling to octupole and pairing vibration modes. (b) d5/2 phase

shifts calculated with the corresponding bare potentials (see Table II).
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5. Bubble overcounting

Freely summing over intermediate particle ⊗ phonon configurations when evaluating the

self-energy diagrams, leads as a rule to some overcounting, since phonons are linear combi-

nations of particle-hole configurations (see Fig. S3).

a

p
p' h'

a

a

p'
p h'

a

Fig. S3: The diagram at the right contains the same intermediate configuration as that of

the left one. If antisymmetrised two-body matrix elements are used, these two diagrams

are identical.

Such overcounting can be cured subtracting the overcounted bubble diagram from the

particle-phonon (RPA series) calculation. In the present case, such overcounting is small (a

few per cent, smaller than our global theoretical accuracy). In fact, the low lying 2+ phonon,

which is by far the most relevant phonon in our calculations, is constructed mostly out of

particle-hole transitions between single-particle states of negative parity (1p−13/2 holes; p1/2

(mainly), p3/2 (very little), f7/2 and f5/2 (negligibly) particles) and marginally by particle-

hole transitions of positive parity (1s−11/2 holes, d5/2 and d3/2 particles). When evaluating the

(positive parity) self-energies of the s1/2 and d5/2 states, the intermediate p⊗2+ configuration

involves particle states of positive parity, and as a consequence overcounting is produced only

by the small positive parity particle-hole components of the 2+ phonon (see Fig. S4). On

the other hand when evaluating the (negative parity) p1/2 self-energy no overcounting arises

since only one p3/2 hole contributes and no involved summation can lead to overcounting

(see Fig. S4).
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2s1/2
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np1/2 1p-13/2

2+

2s1/2

1p1/2

1p1/2
2+

1p1/2

1p-13/2

1p-13/2

Fig. S4: (left) Main p’-h’ configuration renormalizing the 2s1/2 state. Summing over the

number of nodes n and n′ does not lead to double counting, in keeping with the different

parity and angular momentum of the d5/2 and p1/2 states. An identical reasoning applies to

the 5/2+ states. (right) Main p’-h’ configuration renormalizing the 1p1/2 state. In this case

only the 1p−13/2 hole state is taken into account, and no overcounting is possible.
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6. Anharmonic effects

An important point concerns anharmonic effects in many-phonon configurations, associ-

ated with the Pauli principle, which are not taken into account in the rainbow series. They

are particularly relevant in the present case due to the low angular moment of the single-

particle states involved in the calculation. The intermediate configurations d̃5/2 ⊗ 2+ and

s̃1/2 ⊗ 2+ (see Fig. 2, panels (I)(a) and (III)(a),(b) in the main text) implicitly contain a

2-phonon component and this involves an anharmonic effect associated with violation of the

Pauli principle. In NFT the Pauli principle is restored by the so called butterfly diagrams

(and associated ones, see [8], Eqs. (28-35)), which take into account the fermion exchange

between the microscopic p-h structures of the involved phonons (see Fig. S5). We have

not calculated in detail the diagrams but we have estimated the associated correction by

performing a RPA calculation blocking the relevant p-h transitions. This is an approximate

method which coincides with the exact evaluation of the butterfly diagram in the two-level

model. We obtain an increase of the energy of the two-phonon configuration of 2.7 MeV and

a reduction of the deformation parameter β2 of about 30%. The influence of these changes

on the empirical-particle-phonon configurations energy depends on how much two-phonon

weight they carry, which in turn is an output of our calculations. A consistent calculation

leads to an increase of about 2 MeV for the d5/2 ⊗ 2+ configuration and of about 1 MeV

for the s1/2 ⊗ 2+ one (see Fig. S5). The difference between these two corrections reflects

the fact that the calculated 2+ phonon admixture in the dressed 5/2+ state (50%) is about

twice the value obtained for the 1/2+ state (20%).
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FIG. 2. (Upper box) Wavefunctions associated with the renormalised single-particle levels of 11Be. ((I), (II),(III)) (NFT)ren diagrams describ-
ing the processes responsible for the variety of components of the clothed states. Single-arrowed lines pointing up (down) describe particle
(hole) states, while wavy lines represent collective particle-hole (ph)vibrational states. Double arrowed lines pointing down describe the corre-
lated (hh) pair removal vibrational state. The dashed horizontal line ((IV),(b) and (d)) describes the two-body multipole, separable interaction
of self consistent strength. In intermediate states experimental and/or renormalised modes are used (bold face lines and curves). The diagrams
shown in (IV) take care of the Pauli principle violation of the two phonon states implicitly appearing in the intermediate state (I(a)). The label
(ba.) in (I) stands for bare.

sections and of the 5/2+ resonance decay width, in overall
agreement with experimental data. It will be shown that cru-
cial information concerning the nature of the 5/2+ resonance
and the role of the quadrupole mode in dressing the nucleons
moving around the Fermi surface is provided by the reactions
10Be(d,p)11Be(5/2+, 1.783 MeV) and 11Be(p,d)10Be(2+; 3.368
MeV) which forces, in this last case, a virtual state to become
observable. A fact that aside from shedding light on retarda-
tion mechanisms in clothing processes, implies that particle-
vibration coupled intermediate states which dress the single-
particle states have to be real states concerning both energy
and amplitude, as well as radial shape. Thus, (NFT)ren is not
a calculational ansatz but a quantal requirement. Within this
context, it is of notice that self consistency within (NFT)ren

implies that the renormalized ✏̃ j and �̃ j(r)(i) reproduce the
empirical input used for the intermediate states, while initial
states (energies and wave functions) of the di↵erent graphi-
cal contributions are solutions of the bare potential. In other
words, for each value of ✏̃ j there can exist more than one ra-
dial function, depending on whether the nucleon is moving
around the ground state ( i = gs) or around an excited state
(i = coll) of the core respectively. Technically, �̃ j(r)(i) are the
form factors associated with stripping and pickup reactions
around closed shells. For simplicity we will drop the super-
script i in what follows.

We are dealing with a single valence neutron moving out-
side a closed shell (10Be). In such a case, the corresponding
relative motion of a reduced mass particle is translational in-
variant, a property which is ensured in the calculation of the
E1-transition between the parity inverted states making use of
the e↵ective dipole charge Z/A (= 4/11, see below). Transla-
tional invariance is violated when discretizing the continuum
by placing the nucleus at the center of a spherical box of ra-
dius R. However, for the box used in the calculations (R = 30
fm), the zero point energy associated with CM motion is ap-
proximately 20 keV. While the core is spherically symmetric,
the large experimental value of the dynamical quadrupole de-
formation is rather large (�n

2 = 0.9, see Suppl. Mat., Sect. ),
underscoring the fact that the system is close to a quadrupole
sharp phase transition, a phenomenon closely connected with
↵�clustering in a light nucleus like 10Be.

Making use of this theoretical framework ([26] and refs.
therein, see also [27, 28]) we have calculated the variety of self
energy diagrams, renormalizing selfconsistently the motion of
the odd neutron of 11Be in both configuration- (Fig. 2) and
conformation 3D-space (Fig. 3). The energies ✏̃ j of the associ-
ated renormalised single-particle states (drawn with bold face
arrowed lines in Fig. 2) are shown in Fig. 1 (NFT)ren in com-
parison with the data (exp.), while the corresponding wave
functions �̃ j(r) are displayed in Fig. 3 in comparison with

Fig. S5: Butterfly diagrams taking care of the Pauli principle violation of the two phonon

states implicitly appearing in the intermediate states s̃1/2 ⊗ 2+

and d̃5/2 ⊗ 2+.
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7. Calculation of the dipole matrix element

The measured value of the transition strength associated with the dipole transition be-

tween the first excited state and the ground state of 11Be is B(E1) = 0.102± 0.02 e2 fm2 =

0.32 W.U. [9]. The transition strength is defined as

B(E1; Ii → If ) =
1

2Ii + 1
| < If ||iM(E1)||I1 > |2 (21)

The leading contribution for the 1/2+ → 1/2− transition is obtained calculating the tran-

sition between the single-particle part of the renormalised wave functions, weighted with

the appropriate single-particle factor and multiplied by the recoil effective charge eeff =

−eZ/A = −4e/11:

B(E1; Ii → If ) =
e2eff

2Ii + 1
a2
1̃/2+

a2
1̃/2−
|M0|2 (22)

where

M0 ≡< 1/2−||iM(E1)||1/2+ >=

√
3

2π

−1√
3
I(E1) = −

√
1

2π
I(E1), (23)

with I(E1) =
∫
drφ̃1/2+(r)rφ̃1/2−(r). The amplitudes are equal to a2

1̃/2+
= 0.80 and a2

1̃/2−
=

0.84 (see Eqs.(1) and (2) of the main text). Numerically one finds I(E1) ≈ 5 fm, leading to

the zero-order result

B(E1; 1/2+ → 1/2−) ≈ 16

121

1

2
0.67

1

2π
25 e2fm2 = 0.17e2fm2. (24)

s1/2

M(E1)

p1/2

M(E1)

p1/2

s1/2

d5/2

p3/2

2+

M(E1)

p1/2

p3/2

d5/2

s1/2
2+

Fig. S6: Main processes contributing to the dipole transition between the first excited

state and the ground state of 11Be. The vertex correction associated with the low-lying 1−

strength (incipient GDPR) is estimated to be small.
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One has to consider, however, that one expects other important contributions from many-

body processes. The two time orderings associated with the most important ones are shown

in the right part of Fig. S6. They interfere in a destructive way with the leading contribution,

leading to

B(E1; Ii → If ) =
e2eff

2Ii + 1
a21/2+a

2
1/2−|M0 +M1(a) +M1(b)|2

=
16

121

1

2
0.67|

√
1

2π
× 5− 0.28− 0.19|2 e2fm2 = 0.11 e2fm2. (25)

including the coupling to octupole and pairing vibration leads to B(E1) = 0.12e2fm2. We

remark that the usual depletion of the low-lying E1 strength by the giant resonance is not

very effective in the present case, due to the poor overlap between the halo neutron single-

particle states and those of the nucleons of the core (see [10], [11], p.2 and App. A,B; see

also [12]). In fact, it can be estimated that the contribution of the giant dipole polarisation

diagram is much smaller than the bare M(E1) diagram due to the halo character of the

wave functions, and that it also much smaller than the second order quadrupole polarisation

corrections due to the smaller deformation parameter of the GDR compared to quadrupole

mode, and to its much larger excitation energy.

8. Calculation of the charge radius

An estimate of the difference between the value of the charge radius in 11Be and 10Be can

be obtained by considering that the dressed 1̃/2+ wave function has a s1/2 single-particle

part with amplitude a
1̃/2+

=
√

0.80 and a collective part dominated by the admixture with

the lowest 2+ vibration of amplitude a(d5/2+⊗2+)1/2+
=
√

0.20 (see Eq. (1) of the main text).

The contribution to the square charge radius due to the single-particle part is due to core

recoil:

(a
1̃/2+

)2

< r2 >10Be +

(
< r2 >

1/2
s1/2

11

)2
 (26)

The contribution of the collective part is instead given by

a2(d5/2+⊗2+)1/2+

< r2 >10Be (1 +
2

4π
(βem2 )2) +

< r2 >
1/2

(d5/2⊗2+)1/2+

11

2
 , (27)

where we have used the fact that the mean square radius of the nucleus in its 2+ state (first

excited state of a harmonic oscillator) is a factor (1 + 2
4π

(βem2 )2) larger than in its ground

14



state, while the neutron in the (d5/2+ ⊗ 2+)1/2+ state is described by the wave function

φ
d5/2,2

+

s1/2 . One then obtains

< r2 >11Be=< r2 >10Be +(a
1̃/2+

)2

(
< r2 >

1/2
s1/2

11

)2

+

a2(d5/2+⊗2+)1/2+

< r2 >10Be

2(βem2 )2

4π
+

< r2 >
1/2

(d5/2⊗2+)1/2+

11

2
 . (28)

Introducing the values < r2 >10Be= 5.57 fm2, (a
1̃/2+

)2 = 0.80, a2(d5/2+⊗2+)1/2+
= 0.20, βem2 =

1.13, < r2 >
1/2
s1/2= 7.1 fm and < r2 >

1/2

(d5/2⊗2+)1/2+
= 3 fm one obtains < r2 >11Be = 5.57 + 0.80

× 0.42 + 0.20 × (1.13 + 0.07) = 6.15 fm2, and (< r2 >11Be)
1/2 = 2.48 fm, to be compared

with the experimental value 2.466 fm ± 0.015 [13]. Inserting the values (a1/2+)2 = 0.82 and

a2(d5/2+⊗2+)1/2+
= 0.17, obtained including the coupling to octupole and pairing vibrations

(cf. Eq. (17)), leads to 2.47 fm.

9. Coupled equations

An approximate solution of the Schrödinger equation HΨa = EΨa for the wave function

of the clothed odd nucleon can be expressed as

Ψa = [ψ̃laja + [ψ̃lbjbλlaja
· Γ†λ]ja −

¯̃ψlaja − [ ¯̃ψlcjcλlaja
· Γλ]ja ]ΦA

GS (29)

where ΦA
GS denotes the ground state of the nucleus of even mass number A (containing the

correlations needed so that it is the vacuum of the different elementary modes of excitation

used as a basis to describe 11Be, i.e. aj|ΦA
GS >= Γλ|ΦA

GS >= 0), Γ†λ denotes a general creation

operator of a vibrational state (phonon), calculated using e.g. RPA (we will consider for

simplicity the coupling to a single phonon λ),

ψ̃laja = (φ̃laja(r)/r)Θlaja (30)

creates a particle in la, ja,

[ψ̃lbjbλlaja
· Γ†λ]ja = (φ̃lbjbλlaja

(r)/r)[Θlbjb · Γ
†
λ]ja (31)

creates a particle-phonon state coupled to ja and parity (−1)la ,

¯̃ψlaja = ( ¯̃φlaja(r)/r)Θlaja (32)

15



annihilates a hole in la, ja and

[ ¯̃ψlcjcλlaja
· Γλ]ja = ( ¯̃φlcjcλlaja

(r)/r)[Θlcjc · Γλ]ja , (33)

annihilates a hole-phonon coupled to ja and parity (−1)la . The radial wavefunctions φ̃laja
and φ̃lbjbλlaja

must be expanded over a set of single-particle states (HF) lying above the Fermi

energy:

φ̃laja(r) =
∑
ni

xlajai φHFnilaja(r) , φ̃lbjbλlaja
(r) =

∑
nb

R(b,λ)ja
φHFnblbjb(r); ε

HF
nilaja

, εHFnblbjb > εF (34)

while ¯̃φlaja(r) and ¯̃φlbjbλlaja
(r) must be expanded over the occupied states:

¯̃φlaja(r) =
∑
ni

ylajai φHFnilaja(r) , ¯̃φlbjbλlaja
(r) =

∑
nc

R(c,λ)ja
φHFnclcjc(r); ε

HF
nilaja

, εHFnclcjc < εF . (35)

The radial wavefunction ¯̃φlbjbλlaja
accounts for the proper antisymmetrization of the RPA

ground state. In fact the RPA ground state contains 2p-2h configurations, what implies that

the odd particle will find states inhibited by the Pauli principle also above εF . Reciprocally

the ¯̃φlaja(r) wave accounts for the possibility that the impinging particle will find available

states below εF .

It can be shown that the radial wave functions satisfy the coupled equations

[− ~2

2m

d2

dr2
+ Va(+0~ω]φ̃laja + Ξa,bλ(−rdV/dr)φ̃lbjbλlaja

− Ξa,cλ(−rdV/dr) ¯̃φlcjcλlaja
= Eφ̃laja

Ξa,bλ(−rdV/dr)φ̃laja + [− ~2

2m

d2

dr2
+ Vb + 1~ω]φ̃lbjbλlaja

− Ξa,bλ(−rdV/dr) ¯̃φlaja = Eφ̃lbjbλlaja

Ξa,bλ(−rdV/dr)φ̃lbjbλlaja
− [− ~2

2m

d2

dr2
+ Va + 0~ω] ¯̃φlaja + Ξa,cλ(−rdV/dr) ¯̃φlcjcλlaja

= −E ¯̃φlaja

Ξa,cλ(−rdV/dr)φ̃laja + Ξa,cλ(−rdV/dr) ¯̃φlaja − [− ~2

2m

d2

dr2
+ Vc − 1~ω] ¯̃φlcjcλlaja

= −E ¯̃φlcjcλlaja
(36)

where

Va(r) = V (r) + Vls(r) + Vcent(r) (37)

and (see Eq. (5))

Ξa,bλ = 〈Θlaja

∑
λµ

βλYλµ[Γ†λµ + (−1)µΓλµ][Θjb · Φλ]ja〉 =

−ila+λ−lb
(

1√
4π

)1/2

< ja
1

2
λ0|jb

1

2
> βλ (38)

The conditions (34) and (35) imply that these equations must be solved using projection

techniques.
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10. Calculation of the absolute differential cross sections

The calculations of the angular distribution of the reaction 10Be(d,p)11Be(Jπf ) have been

performed in the post representation for the final bound states Jπf = 1/2+ and 1/2− while

the prior representation has been adopted for the unbound state 5/2+, to ensure a rapid

convergence. The transfer form factor is obtained from the single-particle component of the

many-body wave function. In the case of the 5/2+ final state, the 10Be-n potential V10Be−n

is also required. We have approximated V10Be−n with the bare Saxon-Woods potential of

increased depth (bringing it to VWS = - 90 MeV), so that the associated d5/2 elastic phase

shift displays a resonance for ε̃res ≈ 1.45 MeV. The angular distribution is obtained by

summing the cross sections associated with each of the 5/2+ eigenstates calculated in a

given box and lying in the region of the resonance (discretized continuum). Convergence is

obtained for boxes of the order of 40 fm. We note that the cross section associated with

each individual peak of energy ε̃n approximately represents the value of the cross section

integrated over an energy interval lying between (ε̃n−1 + ε̃n)/2 and (ε̃n + ε̃n+1)/2. In order

to compute the energy distribution d2σ/dEdΩ for a given value of θ on a sufficiently fine

energy mesh, we have adopted a continuum energy distribution with a Voigt shape, fitting

the parameters so that the integrals of the distribution best reproduce the values obtained

in the different boxes in the appropriate intervals. The resulting distribution has a FWHM

of 300 keV. Folding the theoretical calculation with a gaussian curve of FWHM = 220

keV, representing the experimental resolution, estimated from the width of the peaks of

the discrete states (cf. Fig. S7), we obtain the line shape shown in the inset of Fig. 1 of

the main text, with a FWHM of 400 keV and in good agreement with the experimental

results. We note that the experimental cross sections contain a background caused by the

other partial waves, that we have not considered in our present calculation. It is remarkable

that the experimental width of the energy distribution of the resonance, populated by the
10Be(d,p)11Be(5/2+) one-nucleon transfer reaction, is considerably larger than the width

associated with the 9Be(t,p)11Be(5/2+) two-nucleon transfer reaction (100 keV, see Fig. 1

of the main text ) and also larger than that exhibited by the calculated elastic phase shifts

(170 keV, see again Fig. 1 of the main text).

Finally, we have also calculated the angular distribution associated with the one-nucleon

transfer reaction 11Be(p,d)10Be populating the 2+ state in 10Be in the post representation,
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making use of the collective part φ̃d5/2,2
+

s1/2 of the initial 1̃/2+ state in 11Be (see Sect. 4).

1 1.5 2
E (MeV)

0

50

100

150

200
dσ

/d
Ω

dE
 (m

b/
sr

 M
eV

) θcm = 6.3o

FIg. S7: The theoretical absolute double differential cross section calculated for the

reaction 10Be(d,p)11Be populating the 5/2+ state at θcm = 6.3o is shown by the solid line.

The dashed line shows the result of convoluting this curve with a Gaussian curve of

FWHM = 220 keV (estimated experimental resolution).
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