Support Vector Machines

• Week 7

Motivation

- Large range of possible decision boundaries
- Construct boundary with maximum margin

https://quantdare.com/svm-versus-a-monkey/

Rethink Cost

Recall Cost:

$$\min_{\theta} \frac{1}{m} \sum_{i} \left(y^{(i)} log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})) \right) - \frac{\lambda}{2m} \sum_{i} ||\theta^{i}||^{2}$$

- For y=0, demand $z=\theta^Tx<-1$
- For y=1, demand $z = \theta^T x > 1$

http://mlwiki.org/index.php/Support_Vector_Machines

Rethink (Con't)

Original Cost:

$$\min_{\theta} \frac{1}{m} \sum_{i} \left(y^{(i)} log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})) \right) - \frac{\lambda}{2m} \sum_{i} ||\theta^{i}||^{2}$$

New Cost:

$$\min_{\theta} C \left(\sum_{i} \left(y^{(i)} cost_1(\theta^T x^{(i)}) - (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right) \right) - \frac{1}{2} \sum_{i} ||\theta^i||^2$$

Note C: can be similar to regularization

Note: $w*x-b=z=\theta^Tx$

By Larhmam - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=73710028

Role of 'C'

https://stats.stackexchange.com/questions/31066/what-is-the-influence-of-c-in-svms-with-linear-kernel

Non-Linear cases

 What about cases with no linear boundary?

https://www.hackerearth.com/blog/machine-learning/simple-tutorial-svm-parameter-tuning-python-r/

Kernel Trick

- "Add" (or alter) dimension to ease classification
- Also known as "kernel machine"

https://www.hackerearth.com/blog/machine-learning/simple-tutorial-svm-parameter-tuning-python-r/

Ex. Gaussian Kernel

- For each group, pick landmarks, I⁽ⁱ⁾
- Distance from landmark determines likelihood

$$f_i = similarity(x, l^{(i)}) = e^{-\frac{||x-l^{(i)}||^2}{2\sigma^2}}$$

Hypothesis in terms of similarity functions

$$\theta^T x \to \theta^T f$$

$$\theta^T f = \theta_0 + \theta_1 f_1 + \dots + \theta_n f_n$$

- Must pick I⁽ⁱ⁾ and σ
 - Arbitrarily pick?
 - Compute mean and variance?

Support Vector Machine

• Employing kernal trick and margin:

https://en.wikipedia.org/wiki/Support_vector_machine

Good Sources

- Ritchie Ng:
 - https://www.ritchieng.com/
 - https://www.ritchieng.com/machine-learning-svms-support-vector-machines/
- Wikipedia:
 - https://en.wikipedia.org/wiki/Support_vector_machine