Weeks 10, 11

Large Scale Machine Learning, Application Example, Photo OCR

Large Scale Machine Learning

- Consider a huge dataset, eg m=10⁹
- Gradient descent would be slow…
- Solutions:
 - Train on subset, e.g. m=100,1000
 - SGD: randomly order, train on individual examples

Learning rate in Large Scale ML

- Same problems faced with small-scale
- Iteratively reduce rate:

$$\alpha(i) = \frac{k_1}{i + k_2}$$

Check convergence, reduce rate

$$|J(i) - J(i-1)| = 0$$

 $\alpha(i) \to k\alpha(i); k < 1$

Map Reduce & Parallelization

- Split operations in ind. operations
- Execute ind. on parallel nodes/CPUs
- Combine results on central node/CPU
- For example, train subsets in parallel, combine results

ML Pipeline

- Split total ML algorithm into steps
- Assign different group to each step
- Optimize each step to determine bottlenecks

ML Pipeline (Con't)

Example:

ML Pipeline (Con't)

Example:

1. Text detection

2. Character segmentation

3. Character classification

ML Pipeline (Con't)

Example: Text detection

Negative examples (y = 0)

Ceiling Analysis

Motivation:

Determine which areas to improve

Procedure:

- Perform basic test
- Tune one component to be 'perfect'
- Check performance
- Repeat

Ceiling Analysis (Con't)

Example:

- Consider a classifier which sees an image possibly containing:
 - Text
 - Face
- If face is present, estimate gender

Baseline Accuracy: 68%

Perfect Text Detection: 69%

Perfect Face Detection: 78%

Perfect Gender Detection: 100%

https://medium.com/@rossbulat/ceiling-analysis-in-deep-learning-and-software-development-8bc41e59364a