

Data Science Workshop Weeks 5 & 6

... (and maybe intro to project) ...

Week 5

- Dropout
- Initialization
- Gradient Descent with Momentum
- Batch Normalization

Dropout

- Form of regularization
- Similar function to L1, L2, etc., very different implementation
- Different behaviour when training, evaluating

Dropout (Con't)

- During training:
 - Randomly weights output of neuron to zero with probability p (or 1-p, in some literature)
 - This has the effect of reducing the networks reliance on that neuron
 - "Normalizes" neuron output to 1/(1-p) to account*
- During evaluation:
 - Does nothing
 - * Some implementations "normalize" during evaluation instead
- This is considered an incredible tool*
- More info here:
 - https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
 - *Some argue it is becoming obselete (more on this later)

Initialization

- Recall from Coursera that one cannot have uniform initialization of weights
- Many forms of initialization exist
 - Many are some form of random initialization within some bounds
- One can randomly initialize and test same ANN several times to estimate bounds of convergence

Gradient Descent with Momentum

- Normal GD can get stuck in local minima
- GD with momentum takes into account the "speed" at which GD occurs along with a "weight"

GD /w Momentum (con't)

https://machinelearningcoban.com/2017/01/16/gradientdescent2/

GD /w Momentum (con't)

- Momentum parameter ranges:
 - Too low: won't push past local minima
 - Too High: may bounce around chaotically

Batch Normalization

- Remember batches?
- For each batch:
 - Scale values such that mean is 0 and standard deviation is 1

Week 6

- What is convolution, and why use them?
- Convolutional Neural Network
- Advantages of CNN vs ANN
- Advantages of ANN vs CNN
- Dropout, Batch Norm, and CNN?

Convolutions

$$(f*g)(t) \triangleq \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau.$$

$$\mathcal{F}\{f * g\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{g\}$$

- Multiplication in frequency domain can be related to convolution in time domain*
- Can use convolution to filter (select) features of interest

https://en.wikipedia.org/wiki/Convolution_theorem

Convolutions (Con't)

http://pilot.cnxproject.org/content/collection/col10064/latest/module/m10790/latest

- In practice, signals/filters have finite width
 - Can partially "solve" this with padding
- Signals/filters are also digital
 - See Nyquist(-Shannon) Theorem
- We can add many filters together in lieu of making good filters
- We can use these filters to select specific traits

Convolutional Neural Network

- CNN is a layer that executes a convolution operation
- Parameters are the size/shape of the filter, as well as the stride of the filter (and bias)

$$Z = W \star x + b$$

- Values of the filter (and bias) are what gets trained
- Typically several filters are chained, and pooled

Convolutional Neural Network (Con't)

Convolutional Neural Network (Con't)

Advantages of **CNN** vs *ANN*

- Number of parameters per CNN layer can (sort of) be independent of input size
- CNN preserves relative position of data
 - le, translation, rotation, magnification less impactful

Advantages of *ANN* vs **CNN**

- CNN often require many, many layers to accomplish goal
- CNN usually must be paired with ANN anyway

Dropout, Batch Normalize, and CNN?

- You can, but according to [1], you shouldn't
 - Dropout is good if you have many parameters
 - CNN already excellent at ignoring/filtering data
- Batch normalization and CNN pair nicely

[1] https://towardsdatascience.com/dont-use-dropout-in-convolutional-networks-81486c823c16

Project/future Ideas

- Delay on HyperK
- Other ideas:
 - We can do our own project(s):
 - Classifier
 - Autoencoder
 - Generative adversarial network (GAN)
 - Etc.
 - Take turns presenting papers/articles on ML or applied ML:
 - Medium
 - TowardsDataScience
 - TwoMinutePapers

Autoencoder

- Unsupervised learning
- Useful for lossy compression
- Can generate cool art

https://en.wikipedia.org/wiki/Autoencoder

Generative Adversarial Network (GAN)

- Train a network to produce structured data from random noise
- A painting created by a GAN recently sold for USD432000