
Q-learning
Gaurav and Tia

Data Science Learning Group
March 25, 2020

Overview

● Basics

● Bellman Equation

● Temporal Differencing

● Q-table

● Parameters

● Learning Procedure

● Issues

● Summary

Q-learning - Basics

● Model-free
○ Model: predicts what the environment will do next (i.e. state change

due to agent’s action, reward from each state)

● "Q": function that returns the reinforcement reward
○ The "quality" of an action taken in a given state

● Learns a policy
○ Policy: what we do in any particular state
○ Maximizes expected value of total reward over successive steps,

starting from current state
○ For any finite Markov Decision Process (FMDP), finds optimal policy

(with infinite time and partly-random policy)

The Optimization Problem

● How do we get to the Q-function?
● This is where Bellman’s principle of optimality comes in:

“Whatever the initial state and initial decision, the remaining
decisions must constitute an optimal policy with regard to the state
resulting from the first decision”

● This breaks down a complex problem into a series of
simpler sub-problems
○ Instead of optimizing global reward all at once, optimize local

reward

Bellman Equations

● Suppose the state at time t is given by xt, and an action
at is taken from that state. The reward from taking the
action is R(xt,at).

● We can repeat this process for each successive state,
while adding in a discount factor, γ, to prioritize
earlier rewards.

● This defines the value function for the initial state x0:

Bellman Equations

● We can separate out the terms as follows:

● This gives us the Bellman Equation (suppressing
subscripts):

● This is a functional equation that can be solved for the
value function - in our case, the Q-function

Temporal Differencing

● Solve for the Q-function iteratively - initialize
Q-values randomly and update them at every time step.

● The prediction at any given time step is updated to bring
it closer to the prediction of the same quantity at the
next time step.

Q-table
● In practice: Q-function represented with a table

● Q-table maps states and actions to q-values

● Policy selects action with highest value for state

 Initialized ---> Trained

How Q-learning Learns - Q-table

http://www.youtube.com/watch?v=ObMsyrwVXTc

Q-learning - Parameters

● Learning rate
○ Affects how strongly the current and future rewards influence the

updated q-value
■ i.e. how quickly it learns

● Discount parameter
○ tracks how much future reward should affect current decision making
○ Value of 1: future reward is of equal value as current reward
○ Value of 0: future reward not considered
○ Rewards received earlier valued higher than those received later

Q-learning - Parameters (Cont’d)

● Epsilon parameter
○ determines to what extent newly acquired information overrides old

information
■ 0 - agent solely exploits prior knowledge (exploitation)
■ 1 - ignores prior knowledge to explore possibilities

(exploration)
○ slowly decays to escape false minima
○ Epsilon-greedy strategy:

■ Picks the current best option ("greedy") most of the time, but
pick a random option with a small (epsilon) probability sometimes

Q-learning Procedure

● Big picture:
○ Select training data (and testing data)
○ Iterate over time

■ We have our state
● consult our policy to select our action (exploitation)
● Select random action (exploration)

■ Get next state and reward
○ Use experience tuple (s,a; s’,r) to update q-table
○ Test policy
○ Repeat until it converges

Example

Goal: Stay in center of box

More training... Even more trainingSome training….

Issues with Q-learning

● Q-table grows very quickly with complexity
○ System dimensionality/finer discretization scheme dramatically

increase q-table size
○ Larger action spaces increase size and also the time required to

learn the table

● Very easy to get stuck in local minima due to the size of
Q-tables (even with random exploration)
○ There can be “unexplored” parts of the Q-table which result in a

greater reward.

Summary

Q-learning: a model-free RL technique to develop an optimal
policy for an agent in some environment

● Q-table values optimized at each time step

● Training uses a combination of exploration and
exploitation

Deep Q-learning

● (Very) High level: replace q-table and update mechanics
with deep neural network
○ Input: observation space
○ Output: q-values

● Major issue: overfitting
○ Since net is updated every step, high tendency to overfit to current

observation space

● Solution: 2 copies of the neural network
■ Update one of the nets at every step, but the fitting is done

w.r.t past steps (so called ‘replay memory’)
■ The other is used to predict the q’s at each step and is updated

periodically after a set number of steps (hyperparameter to be
tuned)

