Q-learning

Gaurav and Tia
Data Science Learning Group
March 25, 2020

Overview

- Basics
- Bellman Equation
- Temporal Differencing
- Q-table
- Parameters
- Learning Procedure
- Issues
- Summary

Q-learning - Basics

- Model-free
 - Model: predicts what the environment will do next (i.e. state change due to agent's action, reward from each state)
- "Q": function that returns the reinforcement reward
 - The "quality" of an action taken in a given state
- Learns a policy
 - Policy: what we do in any particular state
 - Maximizes expected value of total reward over successive steps, starting from current state
 - For any finite Markov Decision Process (FMDP), finds optimal policy
 (with infinite time and partly-random policy)

The Optimization Problem

- How do we get to the Q-function?
- This is where Bellman's principle of optimality comes in:

"Whatever the initial state and initial decision, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision"

- This breaks down a complex problem into a series of simpler sub-problems
 - Instead of optimizing global reward all at once, optimize local reward

Bellman Equations

- Suppose the state at time t is given by x_t , and an action a_t is taken from that state. The reward from taking the action is $R(x_t, a_t)$.
- We can repeat this process for each successive state, while adding in a discount factor, γ , to prioritize earlier rewards.
- This defines the value function for the initial state x_0 :

$$V(x_0) = \max_{a_t} \sum_{t=0}^{T_{fi}} \gamma^t R(x_t, a_t)$$

Bellman Equations

We can separate out the terms as follows:

$$V(x_0) = \max_{a_0} [R(x_0, a_0) + \gamma(\max_{a_t} \sum_{t=1}^{I_{fi}} \gamma^{t-1} R(x_t, a_t))]$$

 This gives us the Bellman Equation (suppressing subscripts):

$$V(x) = \max_{a} [R(x, a) + \gamma V(T(x, a))]$$

 This is a functional equation that can be solved for the value function - in our case, the Q-function

Temporal Differencing

Solve for the Q-function iteratively - initialize
 Q-values randomly and update them at every time step.

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{new value (temporal difference target)}}$$

 The prediction at any given time step is updated to bring it closer to the prediction of the same quantity at the next time step.

Q-table

- In practice: Q-function represented with a table
- Q-table maps states and actions to q-values

Initialized ---> Trained

Q-Table		Actions								
		South (0)	North (1)	East (2)	West (3)	Pickup (4)	Dropoff (5)			
		0	0	0	0	0	0			
			i i	**		14	- 4			
				27	-					
States	327	0	0	0	0	0	0			
				•						
	499	0	0	0	0	0	0			

Q-Table		Actions								
		South (0)	North (1)	East (2)	West (3)	Pickup (4)	Dropoff (5)			
		0	0	0	0	0	0			
					2					
States	328	-2.30108105	-1.97092096	-2.30357004	-2.20591839	-10.3607344	-8.5583017			
	499	9,96984239	4.02706992	12.96022777	29	3.32877873	3.38230603			

Policy selects action with highest value for state

How Q-learning Learns - Q-table

Q-learning - Parameters

- Learning rate
 - Affects how strongly the current and future rewards influence the updated q-value
 - i.e. how quickly it learns
- Discount parameter
 - o tracks how much future reward should affect current decision making
 - Value of 1: future reward is of equal value as current reward
 - Value of 0: future reward not considered
 - Rewards received earlier valued higher than those received later

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{lpha}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_a Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}}
ight)}_{ ext{old value}}$$

new value (temporal difference target)

Q-learning - Parameters (Cont'd)

- Epsilon parameter
 - determines to what extent newly acquired information overrides old information
 - 0 agent solely exploits prior knowledge (exploitation)
 - 1 ignores prior knowledge to explore possibilities (exploration)
 - slowly decays to escape false minima
 - Epsilon-greedy strategy:
 - Picks the current best option ("greedy") most of the time, but pick a random option with a small (epsilon) probability sometimes

Q-learning Procedure

- Big picture:
 - Select training data (and testing data)
 - Iterate over time
 - We have our state
 - consult our policy to select our action (exploitation)
 - Select random action (exploration)
 - Get next state and reward
 - Use experience tuple (s,a; s',r) to update q-table
 - Test policy
 - Repeat until it converges

Example

Some training....

More training...

Even more training

Goal: Stay in center of box

Issues with Q-learning

- Q-table grows very quickly with complexity
 - System dimensionality/finer discretization scheme dramatically increase q-table size
 - Larger action spaces increase size and also the time required to learn the table
- Very easy to get stuck in local minima due to the size of Q-tables (even with random exploration)
 - There can be "unexplored" parts of the Q-table which result in a greater reward.

Summary

Q-learning: a model-free RL technique to **develop an optimal policy** for an agent in some environment

- Q-table values optimized at each time step
- Training uses a combination of exploration and exploitation

Deep Q-learning

- (Very) High level: replace q-table and update mechanics with deep neural network
 - Input: observation space
 - 0 Output: q-values
- Major issue: overfitting
 - Since net is updated every step, high tendency to overfit to current observation space
- Solution: 2 copies of the neural network
 - Update one of the nets at every step, but the fitting is done w.r.t past steps (so called 'replay memory')
 - The other is used to predict the q's at each step and is updated periodically after a set number of steps (hyperparameter to be tuned)