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Q-learning - Basics

● Model-free 
○ Model: predicts what the environment will do next (i.e. state change 

due to agent’s action, reward from each state)

● "Q": function that returns the reinforcement reward
○ The "quality" of an action taken in a given state

● Learns a policy
○ Policy: what we do in any particular state
○ Maximizes expected value of total reward over successive steps, 

starting from current state
○ For any finite Markov Decision Process (FMDP), finds optimal policy 

(with infinite time and partly-random policy)



The Optimization Problem

● How do we get to the Q-function?
● This is where Bellman’s principle of optimality comes in:

“Whatever the initial state and initial decision, the remaining 
decisions must constitute an optimal policy with regard to the state 
resulting from the first decision”

● This breaks down a complex problem into a series of 
simpler sub-problems
○ Instead of optimizing global reward all at once, optimize local 

reward



Bellman Equations

● Suppose the state at time t is given by xt, and an action 
at is taken from that state. The reward from taking the 
action is R(xt,at).

● We can repeat this process for each successive state, 
while adding in a discount factor, γ, to prioritize 
earlier rewards.

● This defines the value function for the initial state x0:



Bellman Equations 

● We can separate out the terms as follows:

● This gives us the Bellman Equation (suppressing 
subscripts):

● This is a functional equation that can be solved for the 
value function - in our case, the Q-function



Temporal Differencing

● Solve for the Q-function iteratively - initialize 
Q-values randomly and update them at every time step.

● The prediction at any given time step is updated to bring 
it closer to the prediction of the same quantity at the 
next time step.



Q-table
● In practice: Q-function represented with a table

● Q-table maps states and actions to q-values

● Policy selects action with highest value for state

   Initialized --->              Trained



How Q-learning Learns - Q-table

http://www.youtube.com/watch?v=ObMsyrwVXTc


Q-learning - Parameters

● Learning rate
○ Affects how strongly the current and future rewards influence the 

updated q-value
■ i.e. how quickly it learns

● Discount parameter
○ tracks how much future reward should affect current decision making
○ Value of 1: future reward is of equal value as current reward
○ Value of 0: future reward not considered
○ Rewards received earlier valued higher than those received later 



Q-learning - Parameters (Cont’d)

● Epsilon parameter 
○ determines to what extent newly acquired information overrides old 

information
■ 0 - agent solely exploits prior knowledge (exploitation)
■ 1 - ignores prior knowledge to explore possibilities 

(exploration)
○ slowly decays to escape false minima
○ Epsilon-greedy strategy:

■ Picks the current best option ("greedy") most of the time, but 
pick a random option with a small (epsilon) probability sometimes



Q-learning Procedure

● Big picture:
○ Select training data (and testing data)
○ Iterate over time

■ We have our state
● consult our policy to select our action (exploitation)
● Select random action (exploration)

■ Get next state and reward
○ Use experience tuple (s,a; s’,r) to update q-table
○ Test policy
○ Repeat until it converges



Example

Goal: Stay in center of box

More training... Even more trainingSome training….



Issues with Q-learning

● Q-table grows very quickly with complexity
○ System dimensionality/finer discretization scheme dramatically 

increase q-table size
○ Larger action spaces increase size and also the time required to 

learn the table

● Very easy to get stuck in local minima due to the size of 
Q-tables (even with random exploration)
○ There can be “unexplored” parts of the Q-table which result in a 

greater reward.



Summary

Q-learning: a model-free RL technique to develop an optimal 
policy for an agent in some environment

● Q-table values optimized at each time step

● Training uses a combination of exploration and 
exploitation



Deep Q-learning

● (Very) High level: replace q-table and update mechanics 
with deep neural network
○ Input: observation space
○ Output: q-values

● Major issue: overfitting
○ Since net is updated every step, high tendency to overfit to current 

observation space

● Solution: 2 copies of the neural network
■ Update one of the nets at every step, but the fitting is done 

w.r.t past steps (so called ‘replay memory’)
■ The other is used to predict the q’s at each step and is updated 

periodically after a set number of steps (hyperparameter to be 
tuned)


